(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	e of the course EL	ECTRIC MACHIN	NE-II	
Course Code: PC-EE-501		Semester: 5th		
Duration: 6 months Maximum Marks: 100				
Teach	ning Scheme Exa	amination Scheme		
Theor	y: 3 hrs/week Mic	l Semester Exam: 1	5 Marks	
Tutori	ial: 0hr/week Ass	ignment & Quiz: 1	0 Marks	
Practi	cal: hrs/week Atte	endance: 0)5 Marks	
Credit	Points: 3 End	l Semester Exam: 7	70 Marks	
Objec	I			
1.	To understand the arrangement of windings of AC			
2.	To understand the principle of production of pulsat			
3.	To understand the principle of operation and char			
4.	To understand the principle of operation and chara			machines
5.	To understand the principle of operation and chara			
6.	To understand the principle of operation and chara			
7.	To solve problems of Induction machines, synchro	nous machines and	special eletrome	echanical
	devices.			
	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Electric Machine-I (PC-EE-401)			
Unit	Content		Hrs	Marks
1	Fundamentals of AC machine windings:			
	Physical arrangement of windings in stator and			
	slots for windings; single-turn coil - active porti			
	full-pitch coils, concentrated winding, distributed		_	
	axis,3D visualization of the above winding type	es, Air-gap MMF	5	
	distribution with fixed current through	. 4 - 11 4		
	winding-concentrated and distributed, Sinuson	idally distributed		
2	winding, winding distribution factor			
2	Pulsating and revolving magnetic fields:	: a1 d		
	Constant magnetic field, pulsating magnetic f current in windings with spatial displacement			
	produced by a single winding - fixed current and			
	Pulsating fields produced by spatially displaced w		5	
	spatially shifted by 90 degrees, Addition of p		3	
	fields, Three windings spatially shifted by 120			
	three-phase balanced currents), revolving magnetic field.			
3	Induction Machines:			
	Construction, Types (squirrel cage and slip-ri	ng), Torque Slip		
	Characteristics, Starting and Maximum Torque.		10	
	Phasor Diagram, Losses and Efficiency. Effe	•	-	
	variation on torque speed characteristics (varia	•		
	stator resistances, stator voltage, frequency). Me			
	braking and speed control for induction motors. Go			
	Self-excitation. Doubly-Fed Induction Machines.			
	Single-phase induction motors:			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Constructional features, double revolving field theory, equivalent	5	
	circuit, determination of parameters. Split-phase starting methods		
	and applications		
5	Synchronous machines:		
	Constructional features, cylindrical rotor synchronous machine -		
	generated EMF, equivalent circuit and phasor diagram, armature		
	reaction, synchronous impedance, voltage regulation. Operating	10	
	characteristics of synchronous machines, V-curves. Salient pole		
	machine - two reaction theory, analysis of phasor diagram, power		
	angle characteristics. Parallel operation of alternators -		
	synchronization and load division.		
6	Special Electromechanical devices:		
	Principle and construction of switched Reluctance motor, Permanent		
	magnet machines, Brushless DC machines, Hysteresis motor,	5	
	Stepper motor, Tacho generators.		

Text books:

- 1. Electrical Machinery, P.S. Bhimra, Khanna Publishers.
- 2. Electrical Machines, Nagrath & Kothary, TMH
- 3. Electrical Machines, P.K. Mukherjee and S. Chakravorti, Dhanpat Rai Publications.
- 4. Electrical Machines, Theory & Applications, M.N. Bandyopadhyay, PHI

Reference books

- 1. Electric Machinery & Transformer, Bhag S. Guru and H.R. Hiziroglu, 3rd Edition, Oxford University press.
- 2. Electric Machinery & Transformes, Irving L. Kosow, PHI
- 3. Electric Machinery, A.E.Fitzgerald, Charles Kingsley, Jr. & Stephen D. Umans, 6th Edition, Tata McGraw Hill Edition.
- 4. Electrical Machines, R.K. Srivastava, Cengage Learning
- 5. Theory of Alternating Current Machinery, Alexander S Langsdorf, Tata Mc Graw Hill Edition
- 6. The performance and Design of Alternating Current Machines, M.G.Say, CBS publishers & distributors
- 7. Electric Machines, Charles A. Gross, CRC press.
- 8. Problems in Electrical Engineering, Parker smith, 9th Edition, CBS publishers & distributors.

Course Outcome:

After completion of this course, the learners will be able to

- 1. describe the arrangement of winding of AC machines.
- 2. explain the principle of operation of Induction machines, Synchronous machines and special machines.
- 3. solve numerical problems of Induction machines, Synchronous machines and Special machines.
- 4. estimate the parameters and efficiency of Induction machines and Synchronous machines.
- 5. determine the characteristics of Induction machines and Synchronous machines.
- 6. select appropriate methods for starting, braking and speed control of Induction machines.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	POWER SYSTEM-I		
Course Code: PC-EE-502		Semester: 5th		
Duration: 6 months Maximum Marks: 100)		
Teach		Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0hr/week	Assignment & Quiz: 1	0 Marks	
Practi	cal: hrs/week	Attendance: ()5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec	tive:			
1.	To understand the basic principle of generation	of Electricity from dif	ferent sources	
2.	To find parameters and characteristics of overhead	ead transmission lines a	and cables.	
3.	To find different parameters for the construction	on of overhead transmi	ission line	
4.	To determine the performance of transmission l			
5.	To understand the principle tariff calculation.			
6.	To solve numerical problems on the topics stud	ied.		
	equisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Electric Circuit Theory (PC-EE-301)			
3.	Electromagnetic field theory (PC-EE-303)			
Unit	Content		Hrs	Marks
1	Basic Concepts:		1115	11262 115
•	Evolution of Power System and present day S	Scenario. Structure of		
	power system: Bulk power grid and Micro Grid			
	Generation of Electric Power:	•		
	General layout of a typical coal fired power s	tation. Hydro electric	10	
	power station, Nuclear power station, their com		10	
	principles, comparison of different methods			
	Introduction to Solar & Wind energy system.	P 8		
	Indian Electricity Rule-1956: General Introdu	ction.		
	Overhead transmission line:			
	Choice of frequency, Choice of voltage, T	Types of conductors		
2	Inductance and Capacitance of a single pha	• 1		
_	symmetrical and unsymmetrical configurations			
	Transposition. Concept of GMD and GMR. I		12	
	conductor capacitance.			
	Overhead line construction:			
	Line supports, Towers, Poles, Sag, Tension and	d Clearance, Effect of		
	Wind and Ice on Sag. Dampers.	•		
	Corona: Principle of Corona formation, Critic	cal disruptive voltage,		
	Visual critical corona discharge potential, Cor	1 .		
	& disadvantages of Corona. Methods of reducti	_		
	Insulators: Types, Voltage distribution a	cross a suspension		
	insulator string, String efficiency, Arching ship	•	05	
	of improving voltage distribution across Insula	_		
3	tests on line Insulators.	6., <u></u>		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Cables: Types of cables, cable components, capacitance of single core & 3 core cables, dielectric stress, optimum cable thickness, grading, dielectric loss and loss angle.	04	
5	Performance of lines: Short, medium (nominal, T) and long lines and their representation. A.B.C.D constants, Voltage regulation, Ferranti effect, Power equations and line compensation, Power Circle diagrams.	06	
6	Tariff: Guiding principle of Tariff, different types of tariff.	03	

Text book:

- 1. Electrical Power System, Subir Roy, Prentice Hall
- 2. Power System Engineering, Nagrath & Kothery, TMH
- 3. Elements of power system analysis, C.L. Wodhwa, New Age International.
- 4. Electrical Power System, Ashfaq Hussain, CBS Publishers & Distributors

Reference books

- 1. Electric Power transmission & Distribution, S.Sivanagaraju, S.Satyanarayana,, Pearson Education.
- 2. A Text book on Power system Engineering, Soni, Gupta, Bhatnagar & Chakrabarti, Dhanpat Rai & Co.
- 3. Electric Power distribution system Engineering, 2nd Edition, T. Gonen, CRC Press.
- 4. www.powermin.nic.in/acts_notification/pdf/ier1956.pdf

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of generation of Electric power from different sources
- 2. determine parameters of transmission lines and its performance
- 3. explain the principle of formation of corona and methods of its reduction
- 4. conduct electrical tests on insulators
- 5. solve numerical problems related to overhead transmission line, cable, insulators and tariff
- 6. analyze overhead transmission line based on short medium and long lines.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	CONTROL SYSTEM	[
Course Code: PC-EE-503 Semester: 5th		Semester: 5th			
Durat	Duration: 6 months Maximum Marks: 10)		
	ning Scheme	Examination Scheme			
	y: 3 hrs./week	Mid Semester Exam: 1			
	al: 0hr/week	Assignment & Quiz: 1			
	cal: hrs./week		05 Marks		
Credit	Points: 3	End Semester Exam:	70 Marks		
Objec					
1.	To find mathematical representation of LTI sy				
2.	To find time response of LTI systems of diffe				
3.	To find the frequency response of LTI system				
4.	To understand stability of different LTI system	S.			
5.	To analyze LTIsystems with state variables.				
6.	To solve problems of mathematical modelling	g and stability of LTI sy	stems		
Pre-Re	equisite				
1.	Basic Electrical Engineering (ES-EE-101)				
2.	Electric Circuit Theory (PC-EE-301)				
3.	Electromagnetic field theory (PC-EE-303)				
4.	Electric Machine-I (PC-EE-401)				
Unit	Content		Hrs	Marks	
	Introduction to control system:				
	Concept of feedback and Automatic control, Effects of				
1	feedback, Objectives of control system, Definition of linear and 04				
	nonlinear systems, Elementary concept				
	robustness. Types of control systems, S	Servomechanisms and			
	regulators, examples offeedback control syst				
	concept. Pole and Zeroes of a transfer	function. Properties of			
	Transfer function.				
	Mathematical modeling of dynamic system				
	Translational systems, Rotational systems				
	Liquid level systems, Electrical analogy of				
2	system. Block diagramrepresentation of co		08		
	diagram algebra. Signal flow graph. Mason's	•			
	Control system components: Potentiometer,				
	Position encoders. DC and ACtacho-genera diagram level description of feedback				
	positioncontrol, speed control of DC motor	•			
	liquid level control, voltage control of anAlternator.				
3	Time domain analysis: Time domain analysis of a standard second order closed loop				
	system. Concept of undamped natural frequency, damping,				
	overshoot, rise time and settling time. Deper		08		
	performance parameters on natural frequence				
	Step and Impulse response of first and second				
	of Pole and Zeros on transient response. Sta				
	Routh-Hurwitz criteria and applications.	· · ·			
	Error Analysis: Steady state errors in contr	ol systems due to step,			
	<u> </u>				

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	ramp and parabolic inputs. Concepts of system types and error		
	constants.		
	Stability Analysis:		
4	Root locus techniques, construction of Root Loci for simple systems.		
	Effects ofgain on the movement of Pole and Zeros.	10	
	Frequency domain analysis of linear system: Bode plots, Polar		
	plots, Nichols chart, Concept ofresonance frequency of peak		
	magnification. Nyquist criteria, measure of relative stability, phase		
	andgain margin. Determination of margins in Bode plot. Nichols		
	chart. M-circle and M-Contours inNichols chart.		
	Control System performance measure:		
5	Improvement of system performance through compensation.	05	
	Lead, Lag and Lead- lag compensation, PI, PD and PID control.		
	State variable Analysis:		
	Concepts of state variables. State space model. Diagonalization of		
6	State Matrix. Solution of state equations. Eigenvalues and Stability	10	
	Analysis. Concept of controllability and observability.		
	Pole-placement by state feedback.		
	Discrete-time systems. Difference Equations. State-space models of		
	linear discrete-time systems.		
	Stability of linear discrete-time systems.		

Text books:

- 1. Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education
- 2. Control System Engineering, I. J. Nagrath& M. Gopal. New AgeInternational Publication.
- 3. Control System Engineering, D. Roy Choudhury, PHI
- 4. Automatic Control Systems, B.C. Kuo& F. Golnaraghi, 8th Edition, PHI

Reference books

- 1. Control Engineering Theory & Practice, Bandyopadhyaya, PHI
- 2. Control systems, K.R. Varmah, Mc Graw hill
- 3. Control System Engineering, Norman Nise, 5th Edition, John Wiley & Sons
- 4. Modern Control System, R.C. Dorf & R.H. Bishop, 11th Edition, PearsonEducation.
- 5. Control System Design, C. Goodwin Graham, F. Graebe F. Stefan, Salgado.E. Mario, PHI
- 6. Modeling & Control of dynamic system, Macia&Thaler, Thompson
- 7. Modern Control Technology Components & Systems, 3rd edition, C.T Kilian, Cengage Learning
- 8. Modern Control Engineering, Y. Singh & S. Janardhanan, Cengage Learning
- 9. Control System Engineering, R. Anandanatarajan& R. Ramesh Babu, ,SCITECH
- 10. Automatic Control system, A. William, Wolovich, Oxford

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. developmathematical model of mechanical, electrical, thermal, fluid system and different control system components like servomotors, synchros, potentiometer, tacho-generators etc.
- 2. analyse stability of LTI system using routh-hurtwitz (RH) criteria, root locus techniques in time domain and bode plot and nyquist technique in frequency domain.
- 3. design different control law or algorithms like proportional control, proportional plus derivative(PD) control, proportional plus integration (PI) control, and proportional plus integration plus derivative (PID) control and compensators like lag, lead, lag-lead for LTI systems.
- 4. apply state variable techniques for analysis of linear systems.
- 5. analyze the stability of linear discrete system.
- 6. solve numerical problems on LTI system modelling, responses, error dynamics and stability.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	POWER ELECTRON	VICS	
Course Code: PC-EE-504 Sen		Semester: 5 th		
Duration: 6 months Maximum Marks: 100				
Teach	ing Scheme	Examination Scheme		
		Mid Semester Exam: 1		
		Assignment & Quiz: 1		
)5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec	-			
1.	To understand the functioning and characteristi	cs of power switching of	devices.	
2.	To understand the principle of operation of con	verters.		
3.	To understand different triggering circuits and	l techniques of commut	ation of SCR	
4.	To find external performance parameter of con-	verters.		
5.	To analyze methods of voltage control, improve	ement of power factor a	and reduction of	harmonics
	of the converter			
6.	To solve numerical problems of converters			
Pre-Re	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Analog Electronics (PC-EE-302)			
3.	Electromagnetic field theory (PC-EE-303)			
4.	Digital Electronics (PC-EE-402)			
Unit	Content		Hrs	Marks
	Introduction: Concept of power electronics, application of			
1	uncontrolled converters, advantages and disa electronics converters, power electronics sy power transistors, power MOSFETS, IGBT and	ystems, power diodes,	04	
	po not transported, po not intobi bito, tobi and			
	PNPN devices:			
	Thyristors, brief description of members of T			
2	symbol, V-Icharacteristics and applications. To SCR, SCR turn on methods, switching		05	
	characteristics, ratings, SCR protection, series			
	gate triggering circuits, different commutation t			
	Phase controlled converters:			
3	Principle of operation of single phase and three phase half wave,			
	half controlled, full controlled converters with R, R-L and RLE			
	loads, effects of freewheeling diodes and sour		06	
	performance of converters. External perform			
	converters, techniques of power factor impro	evement, single phase		
	and three phase dual converters DC-DC converters:			
	DC-DC converters:			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Principle of operation, control strategies, step up choppers, types of	05	
	choppers circuits based on quadrant of operation, performance		
	parameters, multiphase choppers.		
	Inverters:		
5	Definition, classification of inverters based on nature of input	10	
	source, wave shape of outputvoltage, method of commutation &		
	connections. Principle of operation of single phase andthree phase		
	bridge inverter with R and R-L loads, performance parameters of		
	inverters, methods of voltage control and harmonic reduction of		
	inverters.		
	Resonant Pulse Converters:		
	Introduction, Series Resonant inverter, Parallel Resonant inverter,		
6	Zero-Current Switching Resonant converters, Zero-Voltage	05	
	Switching Resonant converter, Two quadrant Zero-Voltage		
	Switching Resonant converter, Resonant DC link inverter.		
7	Applications:		
	Speed control of AC and DC motors. HVDC transmission. Static	05	
	circuit breaker, UPS, static VAR controller.		

Text books:

- 1. Power Electronics, M.H. Rashid, 4th Edition, Pearson
- 2. Power Electronics, P.S. Bhimra, , 3rd Edition, Khanna Publishers
- 3. Power Electronics, V.R. Moorthi, Oxford.
- 4. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill.

Reference books

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, Mohan, Undeland & Riobbins, Wiley India
- 3. Element of power Electronics, Phillip T Krein, Oxford.
- 4. Power Electronics systems, J.P. Agarwal, Pearson Education.
- 5. Analysis of Thyristor power conditioned motor, S.K. Pillai, University Press.
- 6. Power Electronics, M.S. Jamal Asgha, PHI.
- 7. Power Electronics: Principles and applications, J.M. Jacob, Thomson

Course Outcome:

After completion of this course, the learners will be able to

- 1. differentiate between signal level and power level devices.
- 2. construct triggering and commutation circuits of SCR.
- 3. explain the principle of operation of AC-DC, DC-DC and DC-AC converters.
- 4. analysethe performance of AC-DC, DC-DC and DC-AC converters.
- 5. apply methods of voltage control and harmonic reduction to inverters.
- 6. solve numerical problems of switching devices, AC-DC, DC-DC and DC-AC converters.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name (of the course	ELECTRIC MACHINE-IILABORATORY	
Course Code: PC-EE 591		Semester: 5 th	
Duration: 6 months		Maximum marks:100	
Teaching Scheme Examination scheme:			
Theory	y: 0 hr/week	Continuous Internal Assessment:40	
Tutoria	al: 0 hr/week	External Assessment: 60	
	cal: 2 hrs/week		
Credit	Points:1		
	Laboratory Exp		
1.		e Induction Motor & their comparison [DOL, Auto	
	transformer &Star-Delta]		
2.	Study of equivalent circuit of three phase Indu	iction motor by no load and blocked rotor	
_	test.		
3.	Study of performance of wound rotor Induction motor under load.		
4.	Study of performance of three phase squirrel- cage Induction motor –determination of		
	iron-loss, friction &windage loss.		
5.	Speed control of 3 phase squirrel cage induction motor by different methods & their comparison		
	[voltagecontrol & frequency control].		
6. 7.	Speed control of 3 phase slip ring Induction motor by rotor resistance control		
/.	Determination of regulation of Synchronous ma. Potier reactance method.	achine by	
	b. Synchronous Impedance method.		
8.	Determination of equivalent circuit parameter	rs of a single phase Industion motor	
9.	Load test on single phase Induction motor to o		
10.	To determine the direct axis resistance [Xd] &	•	
10.	synchronous machine byslip test.	quadrature reductance [Aq] or a 5 phase	
11.	Load test on wound rotor Induction motor to obtain the performance characteristics.		
12.	To make connection diagram to full pitch & fractional slot winding of 18 slot squirrel cage		
	Induction motor for6 poles & 4 pole operation	, ,	
13.	To study the performance of Induction generator		
14.	Parallel operation of 3 phase Synchronous gen	nerators	
	V-curve of Synchronous motor		

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

- 1. Laboratory experiments on Electrical Machines, C.K. Chanda, A. Chakrabarti, Dhanpat Rai & Co.
- 2. Laboratory manual for Electrical Machines, D.P. Kothari, B.S.Umre, I K International Publishing House Pvt. Ltd.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. validate different characteristics of single phase Induction motor, three phase Induction motor, Induction generator and synchronous motor , methods of speed control of Induction motors and parallel operation of the 3 phase Synchronous generator.
- 5. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	ne of the course POWER SYSTEM-I LABORATORY				
Course Code: PC-EE 592		Semester: 5 th			
Durat	ion: 6 months	Maximum marks:100			
Teach	ing Scheme	Examination scheme:			
Theor	ry: 0 hr/week	Continuous Internal Assessment:40			
Tutor	ial: 0 hr/week	External Assessment: 60			
Practi	cal: 2 hrs/week				
Credit	t Points:1				
	Laboratory Experiments:				
1.	Determination of the generalized constants A.B, C, D of long transmission line and regulation of a				
	3-Φ transmission line model				
2.	Study of distribution system by network analy	zer.			
3.	Measurement of earth resistance by earth tes	ter.			
4.	Determination of dielectric strength of insulat	ing oil.			
5.	Determination of breakdown strength of solic	l insulating material			
6.	Determination of parameter of 3-Φ transmission line model by power circle diagram				
7.	Study of different types of insulator.				
8.	Study of active and reactive power control of alternator.				
9.	Study and analysis of an electrical transmission line circuit with the help of software				
10.	Determination of dielectric constant, tan delta, resistivity of transformer oil.				

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. validate different characteristics oftransmission line.
- 5. determine earth resistance, dielectric strength of insulating oil, breakdown strength of solid insulating material and dielectric constant of transformer oil.
- 6. analyze an electrical transmission line circuit with the help of software
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	of the course	CONTROL SYSTEMLABORATORY	
Course Code: PC-EE 593		Semester: 5 th	
Duration: 6 months		Maximum marks:100	
Teach	ing Scheme	Examination scheme:	
Theor	y: 0 hr/week	Continuous Internal Assessment:40	
Tutori	ial: 0 hr/week	External Assessment: 60	
	cal: 2 hrs/week		
Credit	: Points:1		
	Laboratory Exp	eriments:	
1.	Familiarization with MAT-Lab control system t		
2.	1	er & Second order system with unity feedback with	
	1	system specification , Time constant, % peak	
	overshoot, settling time etc. from theresponse		
3.	1	nse for type-0, type-1 & Type-2 system with unity	
	feedback usingMATLAB & PSPICE.		
4.	Determination of Root locus, Bode plot, Nyquist plot using MATLAB control system tool box for a		
	givensystem &stability by determining control system specification from the plot.		
5.	Determination of PI, PD and PID controller action of first order simulated process.		
6.	Determination of approximate transfer function	ons experimentally from Bode plot.	
7.	Evaluation of steady state error, setting time,	percentage peak overshoot, gain margin, phase	
	margin withaddition of Lead, Lag, Lead-lag cor	npensator.	
8.	1	obtaining closed step responses for gain setting	
	, , , , , , , , , , , , , , , , , , , ,	imped responses. Determination of rise time and	
	1 .	y simulation. Determination of un-damped natural	
	frequency and damping ratio from experimental data.		
9.	1	ead-Lag compensation circuits for a given system	
	using simulation.		
10.	-	system from State Variable model and vice versa.	
11.		using State variable technique by simulation. Study	
		e for asingle input, two-output system in SV form by	
	simulation.		

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. use MAT-Lab control system tool box, MAT-Lab- simulink tool box & PSPICE for simulation of systems.
- 5. determinecontrol system specifications of first and second order systems.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 6. validate step response & impulse response for type-0, type-1 & Type-2 system with unity feedback using MATLAB & PSPICE.
- 7. work effectively in a team

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	ame of the course POWER ELECTRONICSLABORATORY		
Course Code: PC-EE 594		Semester: 5 th	
Duration: 6 months Maximum marks:100		Maximum marks:100	
	Teaching Scheme Examination scheme:		
	y: 0 hr/week	Continuous Internal Assessment:40	
	al: 0 hr/week	External Assessment: 60	
	cal: 2 hrs/week		
Credit	Points:1		
	Laboratory Exp	periments:	
1.	Study of the characteristics of an SCR.		
2.	Study of the characteristics of a Triac		
3.	Study of different triggering circuits of an SCR		
4.	Study of firing circuits suitable for triggering SCR in a single phase full controlled bridge.		
5.	Study of the operation of a single phase full controlled bridge converter with R and R-L load.		
6.	Study of performance of single phase half controlled symmetrical and asymmetrical bridge		
	converters.		
7.	Study of performance of step down chopper v		
8.		lled converter with and without source inductance	
	(simulation)		
9.	, , , , , , , , , , , , , , , , , , , ,	wn chopper with MOSFET, IGBT and GTO as switch	
10	(simulation)		
10.	Study of performance of single phase half controlled symmetrical and asymmetrical bridge		
11.	converter.(simulation) Study of performance of three phase controlled converter with R & R-L load. (simulation)		
12.	Study of performance of three phase controlled Study of performance of PWM bridge inverted in the performance of PWM bridge inverted in the performance of three phase controlled in the performance of the perfo		
13.	Study of Zero Voltage Switching Resonant		
15.	Converter andto plot its output waveforms.	converter and Zero Current Switching Resonant	
14.	Study the speed control of universal motor to plot speed v/s α		
14.	Study the speed control of diliversal filotor to plot speed v/s d		

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Reference book:

1. Power Electronics Laboratory: Theory, Practice and Organization, O.P.Arora, Om Prakash Arora, Alpha science International.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 4. validatecharacteristics of SCR, Triac, and performance of phase controlled converter, DC-DC converter, inverters and resonant pulse converters.
- 5. demonstrate the relation between the speed and firing angle of Universal motor.
- 6. work effectively in a team

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		DATA STRUCTURE & ALGORITHM			
Course Code: OE-EE-501A		Semester: 5 th			
Durat	tion: 6 months	Maximum Marks: 100			
	ning Scheme	Examination Scheme			
	y: 3 hrs./week	Mid Semester Exam: 1			
	al: 0hr/week	Assignment & Quiz: 1			
	cal: hrs./week		05 Marks		
Credit	Points: 3	End Semester Exam:	/0 Marks		
Ohioo	A t				
Objec		0			
1.	To understand the basics of abstract data types				
2.	To understand the principles of linear and non				
3.	To build an application using sorting and sear	cning			
	Programing for making calcing (FS CS 201)				
1.	Programing for problem solving (ES-CS 201) Mathematics (BS-M-102)				
2.	` '				
3.	Mathematics (BS-M-202)		TT	Marilea	
Unit	Content	D-4- Oiti	Hrs	Marks	
	Introduction: Basic Terminologies: Elementa				
1	Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Technique sand		10		
1			10		
	their complexity analysis.				
	Stacks and Queues: ADT Stack and its operation	ations: Algorithms and			
	their complexity analysis, Applications of				
2	Conversion and evaluation – correspon				
	complexity analysis. ADT queue, Types of		10		
	Circular Queue, Priority Queue; Operation	ns on each types of			
	Queues: Algorithms and their analysis.				
	Linked Lists: Singly linked lists: Repres				
3	Algorithms of several operations: Traversing				
	into, Deletion from linked list; Linked repre		10		
	Queue, Header nodes, Doubly linked list: algorithmic analysis; Circular Linked Lists				
	algorithms and the complexity analysis.	<u>*</u>			
	1 •				
	Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on				
	each of the trees and their algorithms with				
	Applications of Binary Trees. B Tree,				
	algorithms and analysis				
	Sorting and Hashing: Objective and properties of different sorting				
4 algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort					
	Merge Sort, Heap Sort; Performance and Cor	mparison among all the	10		
	methods, Hashing. Graph: BasicTerminologie				
	Graph search and traversal algorithms and cor	nplexity analysis.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Text books:

- 1. Data Structures and Program Design In C, 2/E by Robert L. Kruse, Bruce P. Leung. PHI
- 2. Data Structure & Algorithms Using C, R.S. Salaria, 5th Ed., Khanna Publishing House
- 3. Data Structures in C, Aaron M. Tenenbaum. Pearson.
- 4. Data Structure, S. Lipschutz.. Mc Graw Hill.

Reference books

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, MIT press
- 2. Expert Data Structures with C++, R.B Patel, Khanna Publishing House
- 3. Fundamentals of Data Structures of C, Ellis Horowitz, SartajSahni, Susan Andersonfreed, MIT press
- 4. Data Structures Using C, ReemaThareja. Oxford University press
- 5. Data Structure Using C, 2/e by A.K. Rath, A. K. Jagadev. SCITECH
- 6. Data Structures through C, YashwantKanetkar, BPB Publications.

Course Outcome:

After completion of this course, the learners will be able to

- 1. differentiate how the choices of data structure & algorithm methods enhance the performance of the program.
- 2. solve problems based upon different data structure & also write programs.
- 3. write programs based on different data structure
- 4. identify appropriate data structure & algorithmic methods in solving problem.
- 5. discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing
- 6. comparethe benefits of dynamic and static data structures implementations.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name		OBJECT ORIENTEI	PROGRAM	MING
Course Code: OE-EE-501B		Semester: 5 th		
Duration: 6 months		Maximum Marks: 100)	
	8	Examination Scheme		
	5	Mid Semester Exam: 1		
		Assignment & Quiz: 1		
			05 Marks	
Credit	Points: 3	End Semester Exam:	70 Marks	
Objec				
1.	To understand simple abstract data types			
2.	To understand features of object-oriented desig	n such as encapsulatio	n, polymorphis	m,
	inheritance			
3.	To understand common object-oriented design patterns			
4.				
	equisite			
1.	Programing for problem solving (ES-CS 201)			
Unit	Content		Hrs	Marks
1	Abstract data types and their specification. He	-	08	
	ADT. Concrete state space, concrete invariant,			
	Implementing operations, illustrated by the Text			
2	Features of object-oriented programming. Encapsulation, object 08			
	identity, polymorphism – but not inheritance.			
3	Inheritance in OO design. Design patterns. Introduction and classification. The iterator pattern.		08	
	Model-view-controller pattern. Commands a	as methods and as	08	
4	objects. Implementing OO language features. M			
5	Generic types and collections GUIs. Graphica	al programming with	08	
	Scale and Swing . The software development pr	ocess		

Text books:

- 1. Object Oriented Modelling and Design, Rambaugh, James Michael, Blaha Prentice Hall India.
- 2. The complete reference-Java2, Patrick Naughton, Herbert Schildt, TMH
- 3. Core Java For Beginners, R.K. Das, VIKAS PUBLISHING
- 4. Java How to Program, Deitel and Deitel, 6th ED, Pearson

Reference books

- 1. Object Oriented System Development, Ali Bahrami, McGraw Hill.
- 2. Ivor Horton's Beginning Java 2 SDK Wrox
- 3. Programming With Java: A Primer, E. Balagurusamy 3rd Ed., TMH

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. specify simple abstract data types.
- 2. recognise features of object-oriented design such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity.
- 3. apply common object-oriented design patterns
- 4. specify uses of common object oriented design patterns with examples.
- 5. design applications with an event-driven graphical user interface.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Name	of the course	COMPUTER ORGA	NISATION	
Course Code: OE-EE-501C		Semester: 5 th		
Duration: 6 months		Maximum Marks: 100		
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
Tutori	ial: 0hr/week	Assignment & Quiz:	10 Marks	
Practi	cal: hrs./week	Attendance:	05 Marks	
Credit	Points: 3	End Semester Exam:	70 Marks	
Objec	tive:			
1.	To understand the analysis and design of varie	ous digital electronic circ	cuits.	
2.	To understand how Computer Systems work	& its basic principles		
3.	To understand how I/O devices are being acce	essed and its principles e	tc.	
Pre-Re	equisite	• •		
1.	Programing for problem solving (ES-CS 201)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
1	Basic organization of the stored program c	Basic organization of the stored program computer and operation		
	sequence for execution of a program. Role of operating systems and			
	compiler/assembler. Fetch, decode and execute cycle, Concept of			
	operator, operand, registers and storage, Instruction format.			
	Instruction sets and addressing modes. Co			
	systems. Fixed and floating point representati			
2	Overflow and underflow. Design of adders -		08	
	look ahead principles. Design of ALU. Fixe			
	Booth's algorithm. Fixed point division - Restoring and non-			
	restoring algorithms. Floating point - IEEE 754 standard.			
3	Memory unit design with special emphasis	*	10	
	CPU-memory interfacing. Memory organization, static and dynamic			
	memory, memory hierarchy, associative memory. Cache memory,			
ļ	Virtual memory. Data path design for read/wi		10	
_	Design of control unit - hardwired and mic		10	
4		Introduction to RISC		
	architectures. RISC vs CISC architectures. I/			
	of handshaking, Polled I/O, interrupt and DM			

Text books:

- 1. Computer System Architecture, Mano, M.M. PHI.
- 2. Computer Architecture & Organisation, Hayes J. P, McGraw Hill,
- 3. Computer Organisation & Design, Chaudhuri P. Pal, PHI,
- 4. Computer Organization & Architecture, Rajaraman, PHI

Reference books

- 1. Computer Architecture, BehroozParhami, Oxford University Press
- 2. Microprocessors and Microcontrollers, N. senthil Kumar, M. Saravanan, S. Jeevananthan ,OUP

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 3. Computer Organization & Architecture, P N BasuVikas Pub
- 4. Computer Organization & Architecture, B.Ram, Newage Publications
- 5. Computer Organisation, Hamacher, McGraw Hill,

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain basic structure of digital computer, stored program concept, different arithmetic and control unit operations, operating systems and compiler/assembler, memory and I/O operations.
- 2. differentiate between RISC vs CISC architectures, cache memory, virtual memory.
- 3. performfixed point multiplication and division.
- 4. applyrestoring and non-restoring algorithms, floating point IEEE 754 standard.
- 5. design adder, memory unit and control unit, data path for read/write access.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name	of the course	HIGH VOLTAGE EN	GINEERING	
Course Code: PE-EE-501A		Semester: 5 th		
Durat	tion: 6 months	Maximum Marks: 100		
Teaching Scheme Examin		Examination Scheme		
Theor	y: 3 hrs./week	Mid Semester Exam: 1	5 Marks	
		Assignment & Quiz: 1		
		Attendance: ()5 Marks	
Credit	Points: 3	End Semester Exam: 7	70 Marks	
Objec				
1.	To understand the breakdown phenomenon of s	<u> </u>		
2.	To understand the method of generation of high			
3.	To understand measurement techniques of high			
4.	To understand the over voltage phenomenon an	nd insulation coordination	on in Electric p	ower
	systems			
5.	To understand different methods of high voltage	<u> </u>		
6.	To solve numerical problems of breakdown phe			of high
	voltage and currents, over voltage phenomena a	and high voltage testing	•	
	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-EF	E-403)		
Unit	Content		Hrs	Marks
	Breakdown phenomena:			
	Breakdown of Gases: Mechanism of Breakdo			
1	multiplication, Secondaryemission, Townsen		10	
	Theory, Paschen's Law, Determination of			
	voltage, Breakdown in non-uniform field, E corona inceptionand break down voltage.	Effect of polarity of		
	Partial Discharge: definition and development is	n solid dielectric		
	Break Down of Solids: Intrinsic breakdown			
	break down, Thermalbreakdown, Streamer Brea	·		
	Breakdown of Liquid: Intrinsic Break down			
	Suspended particle Theory.			
	Breakdown in Vacuum: Non-metallic electron	emission mechanism,		
	Clump mechanism,			
	Effect of pressure on breakdown voltage.			
	Generation of High Voltage and Currents			
	Generation of highDC and AC voltages: half v			
2	Cockroft-Walton voltage multiplier circuit, El	lectrostatic generator,	08	
	Cascaded transformers, Series resonant circuit.			
	Generation of Impulse voltages and currents: standard impulse wave shapes, Multistage impulse generators, generation of switching			
	surges, generation of impulse currents, trip	-		
	impulse generators.	ping and control of		
	Measurement of High Voltage and Currents			1
3	Sphere gap, Uniform field spark gap, Ro			
	voltmeter, Generating voltmeter, Impulse vo			
	,,			1

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	using voltage dividers, Measurement of High DC and Impulse currents. Cathode ray oscillographs for impulse voltage and current	08
	measurements.	
	Over voltage phenomenon and insulation coordination in	
4	Electric power systems:	
	Lightning Phenomena, Electrification of cloud, Development of	
	Lightning Stroke, lightning induced over voltage, direct stroke,	
	indirect stroke.	08
	Protection of Electrical Apparatus against over voltage, Lightning	
	Arrestors, Valve Type, Metal Oxide arresters, Expulsion type. Effect	
	of location of lightning arresters on protection of transformer.	
	Protection of substation, Ground wires.	
	Insulation Co-ordination, Basic Insulation level. Basic Impulse	
	level, Switching Impulse level. Volt time characteristics of	
	protective devices, Determination of Basic Impulse level of	
	substation equipment.	
	High Voltage Testing:	
5	Various standards for HV Testing of electrical apparatus, IS, IEC	
	standards, Testing of insulators andbushings, testing of isolators and	06
	circuit breakers, testing of cables, power transformers. High voltage	
	laboratory layout, indoor and outdoor laboratories, testingfacility	
	requirements, safety precautions in H. V. Labs.	

Text books:

- 1. High Voltage Engineering, C.L. Wadhawa, New Age International Publishers.
- 2. High Voltage Engineering, M.S. Naidu & V. Kamraju, Tata MC Graw Hill publication.

Reference books

- 1. High-Voltage Engineering: theory and practice, Mazen Abdel-Salam; Hussein Anis; Ahdab El-Morshedy; RoshdyRadwan, New York, N.Y.: Marcel Dekker, ©2000.
- 2. High Voltage Engineering, E. Kuffel, W.S. Zaengl, J. Kuffel, 2nd edition, Butterworth-Heinemann.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain breakdown phenomenon of gas, liquid and solid and vacuum
- 2. suggest methods for generation and measurement of high voltage and currents.
- 3. determine the basic insulation level of substation equipment.
- 4. apply methods for protection of electrical apparatus against over voltage
- 5. test insulators, bushings, isolators, circuit breakers, cables and power transformers.
- 6. solve numerical problems of breakdown phenomena, generation and measurement of high voltage and currents, over voltage phenomena and high voltage testing.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name of the course		POWER PLANT ENGINEERING		
Course Code: PE-EE-501B		Semester: 5 th		
Duration: 6 months		Maximum Marks: 100		
- I		T		
Teaching Scheme		Examination Scheme	7) / 1	
	y: 3 hrs./week	Mid Semester Exam: 1		
	al: 0hr/week cal: hrs./week	Assignment & Quiz: 1 Attendance: 0	0 Marks 05 Marks	
	Points: 3	End Semester Exam:		
Credit	Folius, 5	Eliu Semestei Exam.	/U Marks	
Objec	tive:			
1.	To understand methods of selection of power	plant and its economic		
2.	To understand the principle of operation differ	•	ts.	
3.	Tounderstand methods of site selection of diff			
4.	To understand the cause of pollution and its re			
5.	To understand methods of cooling of generated	<u> </u>		
6.	To solve numerical problems of load estimation		nlants	
	equisite	on, economics or power	pianes.	
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-I	EE 403)		
Unit	Content	3D-403)	Hrs	Marks
Unit	Introduction:		шѕ	Marks
		ew of thermodynamic		
1	Power and energy, sources of energy, review of thermodynamic cycles related to powerplants, fuels and combustion calculations. Load estimation, load curves, various terms and factors			
1				
	involved in power plantcalculations. Effect of variable load on			
	power plant operation, Selection of power pla			
	Power plant economics and selection:			
	Effect of plant type on costs, rates, fixed elements, energy elements,			
	customer elements andinvestor's profit			
	replacement, theory of rates. Economics o	f plantselection, other		
	considerations in plant selection.			
	Steam power plant:	1 . 1 . 1 . 1 . 1 . 1		
	General layout of steam power plant, Power		00	
2	critical and supercritical boilers. Fluidized	-	08	
	mountings and accessories, Different system system, pulverizers and coal burners, combu			
	handling system, Dust collection system, Feed water treatment and condenser and cooling towers and cooling ponds, Turbine			
	auxiliary systems such asgoverning, feed heating, reheating, flange			
	heating and gland leakage. Operation andmaintenance of steam			
	power plant, heat balance and efficiency, Site selection of a			
	steampower plant.			
	Diesel power plant:			
3	General layout, Components of Diesel power	•		
	diesel power plant, fuelsystem, lubrication			
	admission system, supercharging system,			
	plant operation and efficiency, heat balance,	Site selection of diesel		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	powerplant, Comparative study of diesel power plant with	08
	steampower plant.	
	Gas turbine power plant:	
	Layout of gas turbine power plant, Elements of gas turbine power	
	plants, Gas turbine fuels, cogeneration, auxiliary systems such as	
	fuel, controls and lubrication, operation andmaintenance, Combined	
	cycle power plants, Site selection of gas turbine power plant.	
	Nuclear power plant:	
4	Principles of nuclear energy, Lay out of nuclear power plant, Basic	
	components of nuclear reactions, nuclear power station, Nuclear	
	waste disposal, Site selection of nuclear power plants.	
	Hydro electric station:	10
	Hydrology, Principles of working, applications, site selection,	
	classification and arrangements, hydro-electric plants, run off size of	
	plant and choice of units, operation and maintenance, hydro systems,	
	interconnected systems.	
	Non Conventional Power Plants: Introduction to non-conventional	
	power plants (Solar, wind, geothermal, tidal)etc.	
	Electrical system:	
5	Generators and their cooling, transformers and their	
	cooling.Instrumentation Purpose, classification, selection and	06
	application, recorders and their use, listing of various control	
	rooms.Pollution due to power generation and its remedy	

Text books:

- 1. Power Plant Engineering, P.K. Nag, McGraw Hill.
- 2. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd.
- 3. Power Plant Technology El-Vakil, McGraw Hill.

Reference books

- 1. Steam & Gas Turbines & Power Plant Engineering by R. Yadav, Central Pub. House.
- 2. An introduction to thermal power plant engineering and operation, P.K.Das and A.K. Das, Notion press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of operational of Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 2. identifythe cause of pollution for power generation and its remedy.
- 3. suggest location to set up Steam, Hydroelectric, Diesel, Gas turbine and Nuclear power plant.
- 4. compare Steam, Hydroelectric, Diesel, Gas turbine, Nuclear power and non-conventional power plant.
- 5. suggest methods of maintenance of Steam, Gas and Hydroelectric power plants
- 6. solve numerical problems of load estimation and economics of power plants.

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

Name		RENEWABLE & NO ENERGY	N CONVENT	IONAL
Course Code: PE-EE-501C		Semester: 5 th		
		Maximum Marks: 100)	
	0	Examination Scheme		
	,	Mid Semester Exam: 1		
		Assignment & Quiz: 1		
			05 Marks	
Credi	t Points: 3	End Semester Exam: 7	70 Marks	
-11				
Objec		1 1 11		
1.	To understand the difference between Renewab			
2.	To understand methods of conversion of solar e			of energy.
3.	Tounderstand methods harnessing energy from			
4.	To understand the principle of operation of Mag		ower generation	1:
5.	To understand the principle and operation of fu			
6.	To solve numerical problems of Renewable and	d non-renewable energy	sources	
Pre-R	equisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Electric Machine-I (PC-EE-401)			
4.	Electrical and Electronics measurement (PC-EI	E-403)		
Unit	Content		Hrs	Marks
	Introduction to Energy sources:			
	Renewable and non-renewable energy sources			
1	as a measure of Nation's development; stra		03	
	future energy requirements Global and Nationa			
	of renewable energy sources. Impact ofrenewa	ble energy generation		
	on environment, Kyoto Protocol.			
	Solar Energy: Solar radiation - beam and diffuse radiation, so	lar constant corth sun		
2	angles, attenuation and measurement of solar			
2	time, derived solar angles, sunrise, sunset and	·	08	
	collectors, concentratingcollectors, Solar air		08	
	driers, storage of solar energy-thermal storage			
	water heaters, solar distillation, solar still, solar			
	& cooling of buildings, photo voltaic - solar c			
	PV Cells, Mono-poly Crystalline and amorpho			
	Design of PV array. Efficiency and cost of	of PVsystems & its		
	applications. PV hybrid systems			
	Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, varioustypes and 05			
3				
	their constructional features; design considerati			
	vertical axis wind machines: analysis of aerod on wind mill blades and estimation of power of	-		
	site selection considerations	output, wind data and		
	site selection constantations			1

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

4	Biomass conversion technologies, Biogas generation plants, classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas	05
5	Geothermal Energy: Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dryrock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.	05
6	Energy from Ocean: Ocean Thermal Electric Conversion (OTEC) systems like open cycle, closed cycle, Hybrid cycle, prospects of OTEC inIndia. Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation and scope of tidal energy. Wave energy and power from wave, wave energy conversion devices, advantages and disadvantages of wave energy.	05
7	Magneto Hydrodynamic power generation: Principle of MHD power generation, MHD system, Design problems and developments, gas conductivity, materials for MHD generators and future prospects.	05
8	Hydrogen Energy: Introduction, Hydrogen Production methods, Hydrogen storage, hydrogen transportation, utilization of hydrogen gas, hydrogen as alternative fuel for vehicles.	03
9	Fuel cell: Introduction, Design principle and operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, application fuel cells	03

Text books:

- 1. Renewable energy sources and conversion technology, Bansal Keemann, Meliss, Tata Mc Graw Hill.
- 2. Renewable energy resources and emerging technologies, D.P. Kothari, PHI.
- 3. Non-conventional Energy sources, G.D. Rai, Khanna Publishers.

Reference books

1. Non-conventional Energy, Ashok V. Desai, New Age International Publishers Ltd.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of conversion of solar energy, wind energy, biomass, Geothermal energy, Ocean energy and Hydrogen energy to other form of energy.
- **2.** explain the principle of operation of magneto hydrodynamic power generation:
- 3. useSolar energy, Wind energy, Biomass, Geothermal energy, Ocean energy, Hydrogen energy and fuel cell for different applications.
- 4. suggest location to set up wind mill and biogas generation plant
- 5. estimate conversion efficiency of fuel cell.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6. solve numerical problems relating to conversion of Solar energy, Wind energy, Biomass, Ocean energy and Hydrogen energy to heat and electric energy.

Special Remarks (if any)