Nam	e of the course	ELECTRIC CIRCUIT TH	EORY	
	se Code: PC-EE 301	Semester: 3 rd		
	tion: 6 months	Maximum Marks: 100		
Teac	hing Scheme	Examination Scheme		
Theo	ry: 3 hrs/week	Mid Semester Exam: 15 M	larks	
Tuto	rial: 1 hr/week	Assignment & Quiz: 10 N	Aarks	
Practical: 2 hrs/week Attendance: 05 Marks				
Cred	Credit Points: 4+1 End Semester Exam: 70 M			
	Obje			
1.	To understand the structure and properties	of different type of electrical	circuits,	networks
L	and sources.			
2.	To apply different mathematical tools & to	<u> </u>	cal netwo	orks.
3.	To apply circuit analysis techniques to sir			
4.	To solve problems of electrical circuits			
	Pre-Re			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Mathematics (BS-M-102, Bs-M202)			1
Unit	Content		Hrs	Marks
1	Introduction: Continuous & Discrete, Fi		3	
	and Nonlinear, Lumped and Distributed,			
	and systems. Independent & Dependent so	burces, Step, Ramp, Impulse,		
	Sinusoidal, Square, Saw tooth signals			
2	Graph theory and Networks equations		4	
	Tree link, Incidence matrix, Tie-set matri			
3	matrix and node pair potentials. Duality, S		3	
3	Coupled circuits: Magnetic coupling, P induced voltage, Concept of Self and Mu		3	
	of coupling, Modeling of coupled circuits,			
4	Laplace transforms: Impulse, Step &		8	
	RC, and RLC circuits. Transient analysis		0	
	with and without initial conditions. Conc			
	and its application. Solution of Problems	-		
5	Fourier method of waveform analysis		6	
	Transform (in continuous domain on		~	
	analysis, Solution of Problems	• • • • •		
6	Network Theorems: Formulation of	network equations, Source	8	
	transformation, Loop variable analysis, No	· ·		
	Network theorem: Superposition, Theven	•		
	power transfer theorem. Millman's theorem			
	three phase unbalanced circuit analysis. So			
	& AC sources.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	(ipplication from the academic Session 2010 201)		
7	Two port networks analysis: Open circuit Impedance & Short circuit	4	
	Admittance parameter, Transmission parameters, Hybrid parameters		
	and their inter relations. Driving point impedance & Admittance.		
	Solution of Problems		
8	Filter Circuits: Analysis and synthesis of Low pass, High pass, Band	4	
	pass, Band reject, All pass filters (first and second order only) using		
	operational amplifier. Solution of Problems		

Text books:

- 1. Networks & Systems, Ashfaq Husain, Khanna Book Publishing, New Delhi
- 2. Networks and Systems, D. Roy Chowdhury, New Age International Publishers
- 3. Network Analysis and Synthesis, C.L. Wadhwa, New Age International Publishers
- 4. Circuit and Networks: Analysis and synthesis, A. Sudhakar & S.S. Palli4th edition. Tata Mc Graw Hill Education Pvt. Ltd.
- 5. Circuit theory, Dr. Abhijit Chakrabarty, Dhanpat Rai & Co Pvt. Ltd.

Reference books

- 1. Network Analysis, M.E. Valkenburg, Pearson Education .
- 2. Fundamental of Electric circuit theory, D. Chattopadhay & P.C. Rakshit, S. Chand
- 3. Engineering Circuit Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill Company.
- 4. Problems and Solutions of Electric Circuit Analysis, R.K. Mehta & A.K. Mal, CBS, New Delhi

Course Outcome: After completion of this course, the learners will be able to

- 1. describe different type of networks, sources and signals with examples.
- 2. explain different network theorems, coupled circuit and tools for solution of networks.
- 3. apply network theorems and different tools to solve network problems.
- 4. select suitable techniques of network analysis for efficient solution.
- 5. estimate parameters of two-port networks.
- 6. design filter circuits.

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Nam	e of the course	Electric circuit theory		
Cou	rse Code:PC-EE391	Semester: 3 rd		
Dura	ation: 6 months	Maximum marks:100		
-				
	Teaching Scheme Examination scheme:			
	Cheory: NilContinuous Internal Assessment:40Cutorial: NilExternal Assessment: 60			
	tical: 2 hrs/week	External Assessment: 60		
	lit Points:1			
Cie				
	Laboratory	Experiments:		
1.		ork: simulation with software & hardware		
	1			
2.	Transient response of R-L-C series and p	arallel circuit: simulation with software &		
	hardware			
3.		mittance (Y) parameter of two-port network:		
	simulation & hardware.			
4.	Frequency response of LP and HP filters	simulation & hardware		
4.	requency response of L1 and 111 milets.	. sinulation & hardware.		
5.	Frequency response of BP and BR filters	: simulation & hardware.		
-				
6.	Generation of Periodic, Exponential, Sin	usoidal, Damped Sinusoidal, Step, Impulse,		
	Ramp signal using MATLAB in both dis	screte and analog form.		
7.	Determination of Laplace transform and Inverse Laplace transform using MATLAB.			
8.	Amplitude and Phase spectrum analysis of	of different signals using MATLAB.		
9.	Verification of Network theorems using software & hardware			
9.	vernication of Network theorems using	Software & Haluware		

Course Outcome: After completion of this course, the learners will be able to

- 1. determine
 - transient response of different electrical circuit
 - parameters of two port network
 - frequency response of filters.
 - Laplace transform and inverse Laplace transform
- 2. generate different signals in both discrete and analog form
- 3. analyze amplitude and phase spectrum of different signals.
- 4. verify network theorems.
- 5. construct circuits with appropriate instruments and safety precautions.
- 6. Simulate electrical circuit experiments using suitable software.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

Nam	e of the course	ANALOG ELECTR	RONICS	
Cour	se Code: PC-EE 302	Semester: 3 rd		
Dura	tion: 6 months	Maximum Marks: 1	00	
Teac	Teaching Scheme Examination Sch			
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks	
Tutor	ial: 0 hr/week	Assignment & Quiz:	10 Marks	
	ical: 2 hrs/week	Attendance:	05 Marks	
Credi	t Points: 3+1	End Semester Exam:	70 Marks	
	ctive:			
1.	To understand the structure and properties			
2.	To explain principle of operation of anal-	<u> </u>	ents and circui	ts.
3.	To understand the application of operation			
4.	To solve problems of analog electronic			
5.	To analyze amplifiers, oscillators and other	er analog electronic cir	cuits.	
	Requisite			
1.	Physics (10+2)			
Unit	Content		Hrs	Marks
1	Filters & Regulators: Review of half		4	
	rectifier, Capacitor filters, π -section filter			
	and shunt voltage regulator, percentage re			
2	BJT circuits: Structure and I-V characte		8	
	as a switch. BJT as an amplifier: small-s	e		
	circuits, current mirror; common-emitter			
	common-collector amplifiers; Small signa	al equivalent circuits,		
	high-frequency equivalent circuits		-	
3		ructure and I-V	8	
	characteristics. MOSFET as a switch			
	amplifier: small-signal model and biasin			
	source, common-gate and common-dra			
	signal equivalent circuits - gain, input an			
4	trans-conductance, high frequency equiva		5	
4	Feed back amplifier & Oscillators: Co Negative & Positive feedback, Voltage/	-	5	
	feedback, Berkhausen criterion, Colpit, H			
	Wien bridge, & Crystal oscillators.	ianicy s, rhase shift,		
5	Operational amplifier: Ideal OPAMP, I	Differential amplifier	5	
5	Constant current source (Current mirror	-	5	
	CMRR, Open & closed loop circuits, im	· · · · · · · · · · · · · · · · · · ·		
	loop (positive & negative), invertin	-		
	amplifiers, Voltage follower/Buffer circui			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 2018-2017)	
6	Application of Operational amplifiers: Adder, Integrator &	5
	Differentiator, Comparator, Schmitt Trigger, Instrumentation	
	Amplifier, Log & Antilog amplifier, Trans-conductance	
	multiplier, Precision rectifier, Voltage to current &Current to	
	voltage converter.	
7	Power amplifier: Class A, B, AB, C, Conversion efficiency	2
8	Multivibrator: Monostable, Bistable multivibrator, Monostable & Astable operation using 555 timer.	2
9	Special function circuits: VCO & PLL	2

Text books:

- 1. Malvino-Electronic Principles, 6/e, TMH
- 2. Nagrath, Electronics: Analog and Digital, PHI, 2004
- 3. Mottershed, Electronics Devices & Circuits, Wiley Eastern
- 4. Millman & Halkias Integrated Electronics, Tata McGraw Hill.
- 5. Gayakwad R.A -- OpAmps and Linear IC's, 4/e, Pearson-PHI
- 6. Franco—Design with Operational Amplifiers & Analog Integrated Circuits , 3/e,TMH
- 7. Coughlin and Drisscol Operational Amplifier and Linear Integrated Circuits Pearson Education Asia.
- 8. A.K. Maini, Analog Electronics, Khanna Publishing House, 2019
- 9. L.K. Maheswari, Analog Electronics, Laxmi Publications

Reference books

- 1. Nagchoudhuri, Microelectronic Devices, 1/e, Pearson Education, 2001
- 2. Natarajan, Microelectronics: Analysis & Design, 1/e 2005, TMH
- 3. Maheshwari and Anand , Analog Electronics, PHI
- 4. Boyle'stead, Nashelsky: & Kishore, Electronic Devices & Circuit theory, 1/e, PHI/Pearson.
- 5. Millman & Halkias: Basic Electronic Principles; TMH.
- 6. Tobey & Grame Operational Amplifier: Design and Applications, Mc Graw Hill.

Course Outcome: After completion of this course, the learners will be able to

- 1. describe analog electronic components and analog electronics circuits
- 2. explain principle of operation of analog electronic components, filters, regulators and analog electronic circuits.
- 3. compute parameters and operating points of analog electronic circuits.
- 4. determine response of analog electronic circuits.
- 5. distinguish different types amplifier and different types oscillators based on application.
- 6. construct operational amplifier based circuits for different applications.

Special Remarks:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

The above mentioned outcomes are not limited. Institute may redefine outcomes based their program educational objective.

Nam	e of the course	Analog electronic laboratory	
Cour	rse Code:PC-EE392	Semester: 3rd	
Dura	ntion: 6 months	Maximum marks:100	
Teac	hing Scheme	Examination scheme:	
	ry: Nil	Continuous Internal Assessment: 40	
Tuto	rial: Nil	External Assessment: 60	
Pract	ical: 2 hrs/week	Credit Points:1	
	Laboratory E		
1.	Study of ripple and regulation characterist	ics of full wave rectifier with and without	
	capacitor filter.		
2.	Study of Zener diode as voltage regulator.		
3.	Study of characteristics curves of B.J.T &	F.E.T .	
4.	· · · · ·	mplifier & study of it's gain & Bandwidth.	
5.	Study of class A, C & Push-Pull amplifiers		
6.	Study of timer circuit using NE555 & conf	iguration for monostable & astable and	
	bistable multivibrator		
7.	•	construction of a linear voltage regulator using	
	regulator IC chip		
8.	Construction of a simple function generator using IC.		
9.	Realization of a V-to-I & I-to-V converter using Op-Amps.		
10.	Realization of a Phase Locked Loop using Voltage Controlled Oscillator (VCO).		
11.	Study of D.A.C & A.D.C.		

Course Outcome: After completion of this course, the learners will be able to 1. determine

- characteristics of full wave rectifier with filter and without filter
- characteristics of BJT and FET
- characteristics of Zener diode as voltage regulator
- characteristics of class A, C and push pull amplifiers
- 2. verify function of DAC and ADC
- 3. construct
 - function generator using IC
 - R-C coupled amplifier
 - linear voltage regulator using regulator IC chip.
 - timer circuit using 555 for monostable, astable and multistable multivibrator.
 - V to I and I to V converter with Op amps.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- phase locked loop using Voltage Controlled Oscillator (VCO)
- 4. work in a team
- 5. validate theoretical learning with practical

Name	e of the course ELECTRO MAG	NETIO	C FIELD	THEORY
Cours	se Code: PC-EE 303 Semester: 3rd	Semester: 3rd		
Dura	tion: 6 months Maximum Marks	Maximum Marks: 100		
Teacl	hing Scheme Examination Sche	eme		
Theory: 3 hrs/weekMid Semester Exam: 15 Marks				
	rial: 0 hr/week Assignment & Qu			
	tical: 0 hrs/week Attendance:		Marks	
Credi	it Points: 3 End Semester Exa	am: 7	0 Marks	
	Objective:			
1.	To understand the basic mathematical tools to deal with Elec	tromag	netic field	Problem.
2.	To understand properties and application of Electric and mag	netic fi	eld.	
3.	To analyze electromagnetic wave propagation			
4.	To solve problem related to Electromagnetic field.			
	Pre-Requisite			
1.	Basic Electrical Engineering (ES-EE-101)			
2.	Mathematics (BS-M-102, Bs-M202)			
3.	Physics (BS-PH 101)			
Unit			Hrs	Marks
1	Introduction: Co-ordinate systems and transformation, Cart	esian	4	
		erical		
	coordinates & their transformation. Differential length, area			
	volume in different coordinate systems. Solution of problems			
2	Introduction to Vector calculus: DEL operator, Gradient		4	
	scalar, Divergence of a vector & Divergence theorem, Curl			
	vector & Strokes theorem, Laplacian of a scalar, Classification	on of		
~	vector fields, Helmholtz's theorem. Solution of problems	1	0	
3	Electrostatic field: Coulomb's law, field intensity, Gauss's		8	
	Electric potential and Potential gradient, Relation between E			
	V, an Electric dipole and flux lines. Energy densit			
	electrostatic field. Boundary conditions: Dielectric-diele			
	Conductor –dielectric, Conductor-free space. Poisson's Laplace's equation, General procedure for solving Poisson's			
	Laplace's equation, General procedure for solving Poisson's Laplace's equation. Solution of problems	s allu		
4	Magneto static fields: Biot- savart law, Ampere's circuit	1012	8	
+	Magnetic flux density, Magnetic static and Vector pote		0	
	Forces due to magnetic field, Magnetic torque and mom			
	Tronces due to magnetie melu, Magnetie torque and mom	ients,		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

(Applicable from the academic session 2018-2019)		
Magnetisation in material, Magnetic boundary condition,		
Inductor and Inductances, Magnetic energy, Force on magnetic		
material. Solution of problems		
Electromagnetic fields: Faraday's law, Transformer and	6	
motional emf, Displacement current, Maxwell's equations, Time		
varying Potential, Time harmonic fields. Solution of problems		
Electromagnetic wave propagation: Wave equation, Wave	6	
propagation in lossy dielectric, Plane waves in loss less dielectric,		
Plane wave in free space, Plane wave in good conductor, Skin		
effect, Skin depth, Power & Poynting vector, Reflection of a		
plane wave at normal incidence, reflection of a plane wave at		
oblique incidence, Polarisation. Solution of problems		
Transmission line: Concept of lump & distributed parameters,	4	
Line parameters, Transmission line equation & solutions,		
Physical significance of solutions, Propagation constants,		
Characteristic impedance, Wavelength, Velocity of propagation.		
Solution of problems		
	 Magnetisation in material, Magnetic boundary condition, Inductor and Inductances, Magnetic energy, Force on magnetic material. Solution of problems Electromagnetic fields: Faraday's law, Transformer and motional emf, Displacement current, Maxwell's equations, Time varying Potential, Time harmonic fields. Solution of problems Electromagnetic wave propagation: Wave equation, Wave propagation in lossy dielectric, Plane waves in loss less dielectric, Plane wave in free space, Plane wave in good conductor, Skin effect, Skin depth, Power & Poynting vector, Reflection of a plane wave at normal incidence, reflection of a plane wave at oblique incidence, Polarisation. Solution of problems Transmission line: Concept of lump & distributed parameters, Line parameters, Transmission line equation & solutions, Physical significance of solutions, Propagation constants, Characteristic impedance, Wavelength, Velocity of propagation. 	Magnetisationinmaterial,Magneticboundarycondition,Inductor and Inductances,Magnetic energy,Force on magneticmaterial.Solution of problemsElectromagneticfields:Faraday'slaw,Transformerand6motional emf,Displacement current,Maxwell's equations,TimevaryingPotential,Time harmonic fields.Solution of problemsElectromagneticwavepropagation:Wave equation,Wave6propagation in lossy dielectric,Plane waves in loss less dielectric,Plane wave in free space,Plane wave in good conductor,Skineffect,Skindepth,Power & Poynting vector,Reflection of aplane wave atoblique incidence,Polarisation.Solution of problems4Transmission line:Concept of lump & distributed parameters,4Lineparameters,Transmission line equation & solutions,Propagation,Physical significance of solutions,Propagation constants,Characteristic impedance,4

Text books:

- 1. Elements of Electromagnetic, Mathew N.O. Sadiku, 4th edition, Oxford university press.
- 2. Engineering Electromagnetic, W.H. Hyat & J.A. Buck, 7th Edition, TMH
- 3. Theory and problems of Electromagnetic, Edminister, 2nd Edition, TMH
- 4. Electromagnetic field theory fundamentals, Guru & Hizroglu, 2nd edition, Cambridge University

Reference books

Course Outcome: After completion of this course, the learners will be able to

- 1. relate different coordinate systems for efficient solution of electromagnetic problems.
- 2. describe mathematical s tools to solve electromagnetic problems.
- 3. explain laws applied to electromagnetic field.
- 4. apply mathematical tools and laws to solve electromagnetic problems.
- 5. analyze electromagnetic wave propagation
- 6. estimate transmission line parameters

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Nam	e of the course	ENGINEERING MI	ECHANICS	
Cour	se Code: ES-ME 301	Semester: 3rd		
Dura	tion: 6 months	Maximum Marks: 10	00	
Teac	hing Scheme 1	Examination Scheme	e	
	J	Mid Semester Exam:		
		0		
		Attendance:	05 Marks	
Credi	t Points: 3	End Semester Exam:	70 Marks	
	ctive:			
1.	To understand the basic mathematical tool	1		
2.	To learn different mathematical techniques		odies.	
2.	To learn analysis techniques of rigid bodies	S.		
2.	To solve problem of general motion.			
	Requisite			
1.	Physics (BS-PH-101)			
2.	Mathematics (BS-M102, BS-M202)			
Unit	Content		Hrs	Marks
1	Introduction to vectors and tensors	and co-ordinate	5	
	systems	1.		
	Introduction to vectors and tensors and c			
	Vector and tensor algebra; Indical notation			
	anti-symmetric tensors; Eigenvalues and Pr	incipal axes.		
2	Three-dimensional Rotation		4	
	Three-dimensional rotation: Euler's the			
	formulation and Euler angles; Coordinate	e transformation of		
2	vectors and tensors.		(
3	Kinematics of Rigid Body	1	6	
	Kinematics of rigid bodies: Dentition and			
	body; Rigid bodies as coordinate systems;	·		
	a rigid body, and its rate of change; Distin			
	and three dimensional rotational motion; In	0		
	velocity to find orientation; Motion relative	e to a rotating rigid		
4	body: Five term acceleration formula.		5	
4	Kinetics of Rigid Bodies	tum about a raist	5	
	Kinetics of rigid bodies: Angular momen	-		
	Inertia tensor: Dentition and computation,	-		
	and axes of inertia, Parallel and perpendic	ular axes theorems;		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019

	(Applicable from the academic session 2018-2019)		
	Mass moment of inertia of symmetrical bodies, cylinder,		
	sphere, cone etc., Area moment of inertia and Polar moment of		
	inertia, Forces and moments; Newton-Euler's laws of rigid		
	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011.
- 2. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt. Ltd, 2018
- 4. D.S. Bedi & M.P. Poonia, "Engineering Mechanics", Khanna Publishing House, 2019
- 5. R.S. Khurmi, "Engineering Mechanics", S.Chand Publications
- 6. R.K. Bansal, "Engineering Mechanics", Laxmi Publications

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies.
- 2. elaborate the theory of general motion, bending moment, torsional motion and friction.
- 3. develop free body diagram of different arrangements.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

- 4. solve problems with the application of theories and principle of motion , friction and rigid bodies.
- 5. analyze torsional motion and bending moment.

Special Remarks:

Nam	e of the course	II			
Cour	se Code: BS- M 301	Semester: 3rd			
Dura	tion: 6 months	Maximum Marks: 1	00		
Teac	Teaching Scheme Examination Scheme				
Theor	ry: 3 hrs/week	Mid Semester Exam:	15 Marks		
	ial: 0 hr/week	Assignment & Quiz:			
	ical: 0 hrs/week	Attendance:	05 Marks		
Credi	t Points: 3	End Semester Exam:	70 Marks		
Obje					
1.	To understand Probability theory required	<u> </u>		ofession.	
2.	To understand numerical methods to so				
3.	To understand basics of Z transform to	solve engineering prob	olems.		
	Requisite				
1.	Mathematics (10+2)				
Unit	Content		Hrs	Marks	
1	Probability:				
	Basic Probability Theory: Classical				
	limitations. Axiomatic definition. Some e	5			
	i) $P(O)=0$, ii) $0 \le P(A) \le 1$, iii) $P(A')=1$ -		1		
	symbols have their usual meanings. Fre	quency interpretation			
	of probability.				
	Addition rule for 2 events (proof) & its ex				
	2 events (statement only). Related pr		3		
	probability & Independent events. Exter	nsion to more than 2			
	events (pair wise & mutual independe	ence). Multiplication			
	Rule. Examples. Baye's theorem (statem	ent only) and related			
	problems.				
	Random Variable & Probability Distribut	1			
	Definition of random variable. Continuou				
	random variables. Probability density fund	ction & probability	2		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

	(Applicable from the academic session 2018-2019)		
	 mass function for single variable only. Distribution function and its properties (without proof). Examples. Definitions of Expectation & Variance, properties & examples. Some important discrete distributions: Binomial & Poisson distributions and related problems. Some important continuous distributions: Uniform, Exponential, Normal distributions and related problems. Determination of Mean & Variance for Binomial, Poisson & Uniform distributions only. 	2	
2	Numerical Methods:		
2	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating-point arithmetic, Propagation of errors.	4	
	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	5	
	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
	Numerical solution of a system of linear equations: Gauss elimination method, Matrix inversion, LU Factorization method, Gauss-Seidel iterative method.	6	
	Numerical solution of Algebraic equation: Bisection method, Regula-Falsi method, Newton-Raphson method.	4	
	Numerical solution of ordinary differential equation: Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	6	
3	Z transform: Sequence, Representation of sequence, Basic operations on sequences, Z-transforms, Properties of Z-transforms, Change of scale, Shifting property, Inverse Z-transform, Solution of difference equation, Region of convergence.	4	

Text books:

- 1. Lipschutz S., and Lipson M.L.: Probability (Schaum's Outline Series), TMH.
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

6. Hwei P Hsu, "Signal and system", (Schaum's Outline Series), Mc Graw Hill education.

Reference books

- 1. Balagurusamy: Numerical Methods, Scitech.
- 2. R.S. Salaria: Numerical Methods, Khanna Publishing House.
- 3. S.S. Sashtry: Numerical Methods, PHI
- 4. Baburam: Numerical Methods, Pearson Education.
- 5. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.
- 6. Soumen Guha & Rajesh Srivastava: Numerical Methods, OUP.
- 7. Srimanta Pal: Numerical Methods, OUP.

Course Outcome: After completion of this course, the learners will be able to

- 1. explain basics of probability theories, rules, distribution and properties of Z transform
- 2. describe different methods of numerical analysis.
- 3. solve numerical problems based on probability theories , numerical analysis and Z transform
- 4. apply numerical methods to solve engineering problems.
- 5. solve engineering problems using z transform and probability theory.

Special Remarks:

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

Nan	ne of the course	Numerical Methods laboratory		
Cou	Course Code: PC-CS 391 Semester: 3 rd			
Duration: 6 months Maximum marks:100		Maximum marks:100		
Teaching Scheme		Examination scheme:		
The	Theory: Nil Continuous Internal Assessment:40			
Tuto	itorial: Nil External Assessment: 60			
Prac	etical: 2 hrs/week			
Cree	dit Points:1			
	Laboratory Experiments:			
1.	Assignments on Newton forward /backward, Lagrange's interpolation.			
2. Assignments on numerical integration using Trapezoidal rule, Simpson's 1/3 ru				
Weddle's rule.				
3.	Assignments on numerical solution of a s	ystem of linear equations using Gauss		
	elimination and Gauss-Seidel iterations			
4.	Assignments on numerical solution of Algebraic Equation by Regular-falsi and Newton			
	Raphson methods.			
5.	Assignments on ordinary differential equation: Euler's and Runga-Kutta methods.			
6.	Introduction to Software Packages: Matlab / Scilab / Labview / Mathematica.			

Course Outcome: After completion of this course, the learners will be able to

- 1. solve
 - problems with Newton forward /backward, Lagrange's interpolation
 - problems of numerical integration using Trapezoidal rule, Simpson's 1/3 rule, Weddle's rule
 - problems to find numerical solution of a system of linear equations using Gauss elimination and Gauss-Seidel iterations.
 - problems to find numerical solution of Algebraic Equation by Regularfalsi and Newton Raphson methods.
 - ordinary differential equation by Euler's and Runga-Kutta methods.
- 2. find appropriate numerical methods to solve engineering problems.
- 3. use software package to solve numerical problems.

Special Remarks:

Nam	e of the course	BIOLOGY FOR ENGL	NEERS	
Course Code:BS- 301		Semester: 3rd		
Dura	tion: 6 months	Maximum Marks: 100		
Teac	hing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 15	Marks	
	ial: 0 hr/week	Assignment & Quiz: 10 Marks		
	ical: 0 hrs/week	Attendance: 05 Marks		
Credi	Credit Points: 3 End Semest) Marks	
Obje				
1.	To introduce modern biology with an	emphasis on evolution of	f biology	as a multi-
	disciplinary field.			
2.	To make students aware of application		iples in b	10logy and
D T	engineering robust solution inspired by bi	ological examples.		
	Requisite			
1.	NIL		TT	
Unit	Content		Hrs	Marks
	Introduction	• • • • • •		
1	Purpose: To convey that Biology is a		2	
1	discipline as Mathematics, Physics and C		2	
	fundamental differences between scien drawing a comparison between eye and			
	aircraft. Mention the most exciting as			
	independent scientific discipline. Why w			
	Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of			
	Robert Brown and Julius Mayor. These			
	the fundamental importance of observ			
	inquiry	,		
	Classification:			
	Purpose: To convey that classification per	<i>• se</i> is not what biology is		
	all about. The underlying criterion,		3	
	biochemical or ecological be highlighted			
2	at phenomenological level. A comm	•		
	hierarchy Classification. Discuss class			
	cellularity- Unicellular or	multicellular (b)		
	ultrastructureprokaryotes or eucaryotes.	(c) energy and Carbon		
	utilization -Autotrophs, heterotrophs,			
	lithotropes (d) Ammonia excretion -			
	ureotelic (e) Habitata- acquatic or te	errestrial (e) Molecular		

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering (Applicable from the academic session 2018-2019)

	(Applicable from the academic session 2018-2019)		
	taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana,		
	M. musculus.		
	Biomolecules		
	Purpose: To convey that all forms of life has the same building	4	
3	blocks and yet the manifestations are as diverse as one can		
	imagine. Molecules of life. In this context discuss monomeric		
	units and polymeric structures. Discuss about sugars, starch and		
	cellulose. Amino acids and proteins. Nucleotides and DNA/RNA.		
	Two carbon units and lipids.		
	Macromolecular analysis:		
	Purpose: To analyze biological processes at the reductionistic	5	
4	level. Proteins- structure and function. Hierarch in protein		
	structure. Primary secondary, tertiary and quaternary structure.		
	Proteins as enzymes, transporters, receptors and structural		
	elements. Metabolism		
	Purpose: The fundamental principles of energy transactions are the	4	
5	same in physical and biological world. Thermodynamics as	-	
	applied to biological systems. Exothermic and endothermic versus		
	endergonic and exergonic reactions. Concept of Keq and its		
	relation to standard free energy. Spontaneity. ATP as an energy		
	currency. This should include the breakdown of glucose to CO2 +		
	H2O (Glycolysis and Krebs cycle) and synthesis of glucose from		
	CO2 and H2O (Photosynthesis). Energy yielding and energy		
	consuming reactions. Concept of Energy charge.		
	Microbiology	2	
6	Concept of single celled organisms. Concept of species and	3	
6	strains. Identification and classification of microorganisms.		
	Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.		
	Immunology		
	Purpose: How does the immune system work? What are the	5	
7	molecular and cellular components and pathways that protect an		
	organism from infectious agents or cancer? This comprehensive		
	course answers these questions as it explores the cells and		
	molecules of the immune system.		
	Immunology- Self vs Non-self, pathogens, human immune system,		
	antigen-antibody reactions.		
	Information Transfer		
	Purpose: The molecular basis of coding and decoding genetic	4	
8	information is universal. Molecular basis of information transfer.		
	DNA as a genetic material. Hierarchy of DNA structure- from		
	single stranded to double helix to nucleosomes. Concept of genetic		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.		
	promeration • metastasis • cen promeration • cen deati • cen •D		
9	Cancer biology Purpose: A basic understanding of cancer biology and treatment. The course is not designed for patients seeking treatment guidance – but it can help to understand how cancer develops and provides a framework for understanding cancer diagnosis and treatment. Identification of the major types of cancer worldwide. Description of how genes contribute to the risk and growth of cancer. List and description of the ten cellular hallmarks of cancer. Definition of metastasis, and identification of the major steps in the metastatic process. Description of the role of imaging in the screening, diagnosis, staging, and treatments of cancer. Explanation of how cancer is treated.	5	
10	Techniques in bio physics Purpose: Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. The techniques including microscopy, spectroscopy, electrophysiology, single-molecule methods and molecular modeling	3	
11	Stem cell Purpose: Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues.	2	

Text / References:

1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A

global approach", Pearson Education Ltd, 2014.

- E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.
- 4. G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.
- 5. L. M. Prescott, J. P. Harley and C. A. Klein, "Microbiology", McGraw Hill Higher

Education, 2005.

6. Lewis J. Kleinsmith. "Principles of cancer biology", Pearson, 2016

Course Outcome: After completion of this course, the learners will be able to

- 1. describe with examples the biological observations lead to major discoveries.
- 2. explain
 - the classification of kingdom of life
 - the building blocks of life
 - different techniques of bio physics used to study biological phenomena.
 - the role of imaging in the screening, diagnosis, staging, and treatments of cancer.
- 3. identify DNA as a genetic material in the molecular basis of information transfer
- 4. analyze biological processes at the reductionistic level.
- 5. apply thermodynamic principles to biological systems.
- 6. identify microorganisms.

Special Remarks:

Nam	e of the course	NDIAN CONSTOTUTION			
Cour	se Code: MC-EE 301 S	Semester: 3rd			
Dura	tion: 6 months	Maximum Marks: 100			
Teac	hing Scheme I	Examination Scheme			
	8	Aid Semester Exam: 15 Mark			
		Assignment & Quiz: 10 Mar			
			05 Marks		
		End Semester Exam: 70 Mark			
Cicui		ind Semester Exam. 70 Wark			
Obje	ctive:				
1.	To have basic knowledge about Indian Cor	nstitution.			
2.	To understand the structure and functioning		government.		
3.	To understand the structure, jurisdiction an				
Pre-F	Requisite				
1.	NIL				
Unit	Content	Hrs	Marks		
1	Indian Constitution:	5			
	Sources and constitutional history, Features: Citizenship,				
	Preamble, Fundamental Rights and	Duties, Directive			
	Principles of State Policy				
2	Union government and its administration:				
	Structure of the Indian Union: Federalism, Centre- State				
	relationship, President: Role, power and	position, PM and			
	Council of ministers, Cabinet and Centra	al Secretariat, Lok			
	Sabha, Rajya Sabha.				
	State government and its administration:				
	Governor: Role and Position, CM and Council of ministers,				
	State Secretariat: Organisation, Structure and Functions				
3	Supreme court: Organization of supreme	court, procedure of 10			
5	the court, independence of the court, jurisdi				
	supreme court.				
	High court: Organization of high court	procedure of the			
	court, independence of the court, jurisdic	* *			
	supreme court.	F			
	Subordinate courts: constitutional provision, structure and jurisdiction.				
	National legal services authority, Lok ada gram nyayalays.	lats, family courts,			
	Public interest litigation (PIL): meaning of	of PII features of			
	PIL, scope of PIL, principle of PIL, guide				
	1 1L, scope of 1 L, principle of FiL, guide	inco ior aumitting			
	PIL				

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)	
District's Administration head: Role and Importance,	
Municipalities: Introduction, Mayor and role of Elected	
Representative, CEO of Municipal Corporation, Pachayati raj:	
Introduction, PRI: Zila Pachayat, Elected officials and their	
roles, CEO Zila Pachayat: Position and role, Block level:	
Organizational Hierarchy (Different departments), Village	
level: Role of Elected and Appointed officials, Importance of	
grass root democracy.	

Text books:

1. Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.

Reference books

1. DD Basu, "Introduction to the constitution of India", 21st Edition, Lexis Nexis Books Publication ltd, India

Course Outcome: After completion of this course, the learners will be able to

- 1. describe
 - different features of Indian constitution..
 - power and functioning of Union, state and local self-government.
 - structure, jurisdiction and function of Indian Judiciary.
 - basics of PIL and guideline for admission of PIL.
 - Functioning of local administration starting from block to Municipal Corporation.
- 2. identify authority to redress a problem in the profession and in the society.

Special Remarks: